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TlllCHl?ICALNOTN NO. 1012

VELOCITY I)f$TRIBUTION ON WING SEOTIONS 01’ ARBITRARY, SHAPE ‘-

IN OOMPILESSIBI131POTSINTIAL FLOW

II - SUBSONIC SYMMETRIC ADIABATIC FLOWS

By Lipman Bers

SUMMARY

This paper extends the method of oomputing the pressure
distribution along a symmer%ioal profile of arbitrary shape
given in NACA Tsohnioal Note No. 1006 under the assumption
of a linearized pressure-volume relation to the case of an
everywhere subsonic flow Satisfying the rigorous adiabatlo
equation of state. Either the stream Mach number or the
maximum 100al Mach number may, be prescribed

The a~tual applicability Of the method depends upon the
development of efficient procedures for numerical integra-
tion of linear partial differential equations with variable
coefficients.

Tables and graphs of funotione needed for the computa-
tion are given, and a velooity correction formula proposed
by Garrick and Kaplan is discussed.

INTRODUCTION

In a recent paper (reference 1) the author presented an
effective method of oomputing the velooity distribution along
a synmtetrioal profile of arbitrary given shape under the as-
sumption that the potential compressible flow past the pro-
file obeys the so-aalled linearized pressure-density relation,
In this paper this method is extended to the ease of the ad-
iabatic pressure-density relation which actual flows satisfy
with a high degree of aacuracy. In faot, the method presented
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here is applicable to any empirically or theoretically given
ii pressure-density relation, provided the flow remains every- .-

where eubsonic.
..

The computational labor involved in applying this method
is considerably greater than in the case of the linearized
pressure-density relation, The actual computations could
hardly be attempted without using either automaj~c oomputing
maohines Qr electrical models. In fact, at the present state
of mathematical analysis, it is doubtful whether reliable
theoretical results on pressure dlstri%utions for high sub-
sonio speeds and on the values of the critical Mach numler
for various profiles oould be obtained by any method without
extensive numerioal computations, On the other hand, the
present ideas concerning what constitutes diffioult amputat-
ions will doubtless undergo a very radioal change in the near
future due to the development of modern automatic computing--
machines,

In the authorts opinion, the merit of the present method
lice in the fact that it eliminates the mathematical diffi-
culties peculiar to the fluid dynamical problem considered

Y and reduoes the solution of this problem to the numerical “-’
.—

integration of a linear partial differential equation, Thi S
latter problem is of prime importance to all branches d-f ap-

9“ plied mathematics and is the subject of many investigations,

The present method is based upon the application Of a
transformation which for compressible flows takes the place
of oonformal mappin .

?
This transformation was introduced in

a previous paper. See referenoe 2.) The pressure distribu-
tion problem is first reduced to the determination cf a func-
tion f(~) defining a point-to-point correspondence between
the prescribed profile and a circle. Then it is shown that
this function satisfies a f,mcticllalequation of the form
f = F(f) where X’ is a certain functional operator. In
order to determine f, a trial solution fo is chosen, and
the functions fl = f(f~), f~ = r[f~), ... are oorzputed, On

the basis of computations carried out for a simple special
case (Y = -1), it may be expected that the sequence f~,
fa,... rapidly converges toward the desired funotion f(w).
The computation of the transform4 I?(fn) involves an integra-

tion of a linear partial differential equation previously
mentioned~

●

—

On the basis of the theoretical resulte o%tained, a dis-
cussion of a “velocity correction formula” proposed by
Garrick and Kaplan is given.
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SYMBOLS

constants (appendix I)

auxiliary functions defined by equation (36)

speed of sound

positive constants

non-Euclidean length element

domain exterior to the profile P

functional transformation defined in section 8

function defining the mapping of the circle into
the profile

coefficients of the metrio generated by the flow

harmonfc function defined by equations (42) and
(43)

funotion defined by equation (40)

Mach number

profile in the z-plane

lattice points in the Z-plane (appendix I)

pressure

—.
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function defined by

velocity components

cdao
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as function of
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q*

components of the distorted velocity

complex velocity

distorted velocity

Cartesian coordinates in the z-plane

Cartesian coordinates in the Z-plane

complex variable in the plane of the flow

leading and trailing edges

auxiliary oomplex variable

angle at the trailing edge

coefficients of the difference equation
(appendix I)

coefficients of the Lie3mann transformation

exponent in the preesure-density relation

complex variable in the plane of the cirole

slope of the profile P

angle between the velocity vector and the x-axis
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value of q* for M = Mm

Gartesian ooordinatee in the t-plane

density

dimensionless length parameter or the profile

argument of c

auxiliary function defined by equation (35)

velocity potential

funotion proportional to the velocity potential

function proportional to the stream function

argument of a point on the circle Icl=l

partial derivative of ( ) with respeot tc
(similarly for y, t, T, etc. )

value of ( ) at a stagnation point

value of ( ) at infinity

maximum of ( ) in the domain considered

boundary value of ()

x

ANALYSIS

1, Basic Relations

J!.steady two-dimensional potential flow of a compressi-
ble fluid is characterized %y ~he quantities:
p (density),

p (pre;sure),
q (local speed), and 0 (angle between the

velocity vector and some fixed direotf,on, say the direction
of the x-axis). The components of the velocity vector are.
given hy

& u= q cos e, v = ~ sin e

the complex quantity
.
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w= u - iv = qe
-ie

is called the (conjugate) complex velocity. Pressure and
deneity are connected by the adiabatio relation

P/Py = Po/Poy

where the subscript o refers to the fluid at a stagnation
point. The exponent Y is a constant; for air Y = 1.4050
Instead of the speed q it is convenient to uee the dimens-
ionless quantities

q
and M = +

a.

where

is the speed of sound.

) Bernoullils theorem implies the relations-w

‘Y

(
Y - 1 qa Y-l

p = p. 1 -~—
aoa )

Ma= qa/aoa

-1~l-~
2 a.a

It will be convenient to use the
tions q** and T of the speed which
subsonio range hy

(1)

(2)

following two func-
are defined in the
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and

Here

.-

(3)

(4)
-.

1 2
‘B =a—

0 7+1

is the critical speed for which M = 1, A simple computation
yields

/- \’Y.
.,

‘-=$J’=%‘*2=2F2$’H$
-.

——

T=

-——

(6)

where

r‘Yi-lY==_
Y-1

——.

It is clear that the “distorted s~eed” q- is an increasing
function of the dimensionless quantity qfao and that

q* = Of Orq=O, q*=l for q=qe

Hence all quantities characterizing the flow may be expressed
as functions of q*2; in particular
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q = aoQ(q*2) T =T(q*2) (7) “

The functions iiiscussedin this section ~ tabulated
(for L = 1.405) in tables 1 to k end plotted in figures 1
to 3. Tables 1 and 2 on which “&e other ccnrputationswere

--—-.——

based were taken ovey fruz tables corrputadon the 1. B. M.
Automatic Sequence Controlled Calculator. (See reference 3.)

The complex function

w++=q*e -ie

is called the distorted velocity.
ylies that of w, since

The knowledge

T%

—

(8]

of e im-

Rmi= k 1: For em isothermal flow (h = 1) the yreced-
ing formulas must be replaced by the following -

P = Poe
-q*/ 2aoz

j P= P&’
-qz/ 2a.2

M= q/a.

q/aQ d“1- q2/ao2
q++= e

---- —

—

,= /(y~e ,2/%2 ‘ “-- ------

/
a. 2 .

h -—.—
Eim223L&uThe preceding formlas, with the exception of

thoee for p, remain valid M the yressuzze-density relation
i5 assumed in the slightly more general form

. ....._
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P =Apy+B

where A and B are oonetantsg

Remark 3\ The method desori%ed in thie report can he
applied to any preesure-deneity relation, provided the
flow remains subsonic,

2. The Boundary Value Problem

Consider a symmetrical profile P in the plane of the
complex variable z = x + iy. It will be assumed that the
x-axie coincides with the axis of symmetry of the prcfile and
that the trailing edgo ZT is to the right, Let S %e the

length of the curve P and s the arc length measured along
this curve from the poiht ZT in the counterclockwise direc-

tion. The points on the profile may be characterized by the
dimensionless parameter

(9)

Thus a = O corresponds to ~T and o = n to the leading
* edge Furthermore,

‘L’
let ~(a) denote the slope of P

at a point corresponding to a. This angle is defined as
the positive angle by which the positive x-axis must ‘be
turned to move it parallel to the tangent vector to P point-
ing in the direction of increasing a. (See fig. 5.) Thus
the function ~(a) depends only upon the shape of F and

63(0) = Tr - 42, ~(m) = 3n/2, @(2Tr) = 277+ a/2 (20)

where a is the angle at the trailing edge (Osa <n},
E’urthermore,

The equation of the profile P can be written in the form

f

9

z =zT+S eie(u’)daf ~~=<2=
+ (12)

o
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Consider now a steady subsonic circulation-free poten-
* tial flow of a compressible fluid past P. Let aocp(x,y)

be the velocity potential, Then

and the magnitude of the velocity vector q is given

so that the continuity equation

becomes a nonlinear partial differential equation for
In fact , this equation may be written in the form

where subscripts denote partial differentiation. I’or

(13)

by

(14)

(15)

%

(16)

the
special case Y = -1, this becomes the equation of a minimal
surface,

The velocity potential q(x, y) is determined as the
(one-valued) solution of this differential equation satisfy-
ing certain auxiliary conditions. The first of these states
that the undisturbed flow has the positive x-direction. It
may be written in the form

(17)
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(18)

this oondition is equivalent to the following .— —

lim 0=0 (19)
z--m

The second condition is a boundary condition expressing
the fact that the profile P is a streamline:

where a/an denotes differentiation in the normal direction.
In view of the symmetry of the flow this condition may he
restated as follows

{}

e-~ J
}

upper
e = on the bank of P

1

(21)
@+2Tr lower

Finally, a condition is needed which determines the
magnitude of the s~eeds involved. This can be done in two
ways . It is possible to prescribe the epeed q.e of the
undisturbed flow. The condition then reads

or
lim q=!t= --.-—
Z+=

(23)

Alternatively, it is possible to prescribe the maximum local
speeds qmax” The condition reads

‘ax 1(2Y‘w =* (24)



or

max q = qmax (25)

In the first case, the stream Mach number Ma is prescribed,

in the second, the maximum local Mach number Mmax. In the

second case, the condition imposed on q has the character
of a boundary condition, since the maximum speed is attained
at the boundary. (The proof of this statement will be found
in reference 4; it alsc follows from the considerations of
sec. 4.)

In the following, this %oundary value prcblem will be
reduced to a mapping problem.

3. Mapping of the Profile into a Circle

The hodograph of the compressible flow around P is the
domain in the w-plane (w = u - Iv) into which the domain
E(P) exterior to P is taken by the transformation

w= ( )aoacQiaQ
ax by

.--—.—

(26)”’

In the case of a symmetrical flow the hodograph is a doubly
covered Riemann surface with a branch pcint at w = qe as
shown in figure 5. This surface is transformed into the ltdis-
torted hodographll by the transformation

(27)

where q* is the function of wII defined by (3).
~inally, the distorted hcdograp~ ~s mapped conformably into
the domain 1~1>1 of the auxiliary ~-plane by an ana”lytla “--

.-—

function g(w~) satisfying the conditions .

In this way a transformation

.[ = g(x, y), ‘n = n(x, y) (28)
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of the domain E(P) into the domain 1s1>1 is obtained.
e It is seen that the points

z = co, z = %Lt z=zT

are taken into the points

t = a, c = -1, c1=

respectively, and that the horizontal direction at infinity
ie preserved by the mapping:

The resulting mapping of the profile P into the unit
oirale can be described by means of a function

~ = f(w) (30).

such that a point z of P corresponding to the parameter
value a = f(w) is taken into the point [=

*iuJ, The func-U
tion (30) is an inoreaeing function and

f(o) = o, f(21T) = 2TT

Furthermore, by reasons of symmetry

f(27T - a) = 277 - f(a)

so that

f(n) = 1-f

It will be shown that the knowledge of the function
implies that of the velocity and pressure distribution along

. P.

(32)

(32)

(33)

f(w)

Remark L$ It has been shown (reference 2) that the
transformation (28) is conformal with respect to the following.
Riemann metric:
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dSa = 1311 ~x2 + 2g1adxdy + gaadya
3

where

14

(34)

(35)

~aa = 1 - Ma COS= e
J

It is instructive to consider three special oases. R’or
an infinitely slow flow (ioei , for an incompressible fluid)
M= O and dSa = dx a + dya. Then the mapping just constructed
is the standard oonformal mapping of a profile into a oirele,
R’or a uniform flow in the x-direction 0 = O, M is constant
and dSa = dxa + (1 - Ma)dya. The introduction of the metric
(34) is equivalent to the well known Prandtl-Glauert c?ontrao-
tion. Finally, in the case Y = -1, the mapping (28) ooin-
cides with the mapping defined by the equation.

oonetant
(’+ i)

=cp+i*

:h~re $ is the stream function of the flow.
.

(See referenoe

4. Computation of the Velocity in the &Plane

From the way in which the mapping of the z-plane into
the c-plane has been defined it follows that the distorted
velooity

-ie
W* = q*e

is a one-valued regular analytic functtoa of

the fun.tio~”=-~ an’(un’ess “~O::%r’l’;Lo––
It vanishes only for* Moreover,

.
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is continuous for 1~1 ~ 1 and is nowhere in this domain
w equal to either zero or infinity. (For the proof of this

last assertion, see reference 1, sec. 3.)

Set
logx=A+iB (36)

Then A+iB and henoe B - iA are regular one-valued ana-
lytic funotions. Hence A(~) may be computed in terms of
the boundary values of the function B{~), For 1~1>1
this is done by means of the Poisnon-Schwarz integral ,formula

.

.

*

f

an

B(c) - iA(t) = -& eiw + ~ B(ei’”)dW - iA(oY)
eiw

o -t

which implies that

f

an

A(C)=A r sin(T-uJ) B(eiw)+A(co),
n, 1- 2r cos(T-UJ)+ra

o

For l~j = 1 the formula to be used reads

11

A(eiw) ‘ - & f{
B(eiWiT) - B(eiw-iT)

}
cot

“o

(See, for instanoe, reference S, Pi(:~$j) Of

% i$;; s:b:l
to determine first and

by the formula

~ dT + A(a)
2

course, it is
then to compute

f

2Tf

A(reiT) = - ~
1- ra

21T
A(eiW)dW

1- 2r oos(T-uI)+ra
o

*

If the value of e at a point of -P corresponding to
the parameter value u is denoted by e(u),
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B(eiW)= - ~[f(w)]- arg(l+ Qiw)-f# arg(eiw- l)+ l+: w (37)
● ()

and

{

w/2 for O< W<TT
arg(l + eiW) =

u)/2+ n for Tr<w<2TT

Furthermore, by virtue ef (36) and (21)

.

w

-c[f(u)] - TT for Ocw<n
F[f(w)] =

}

(38)
[f(W) ]-2n for n<w<2TT

(t+l)(dlog (q*= A + log ——
l+a/7r

~

and if the value “of q~ at a point of P belonging to the
parametervalue a is denoted by ~*(a) , then

By noting that A(~) equals the logarithm of the value
Gf the distorted speed at infinity and combining the preced-
ing farmulas, the following expressions for q* are obtained:
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and

(&+l) (&-1)
#

q*(c) = q*
~H(~)

(41)m
t
Z+alm

where the (harmonic) function H(~) is given by either of the
twO equivalent formulas:

f

aTr

H(t) =+ r 8in(7 - W)

{ }
@[f(w)] -a# W U) (42)

l-2r cos(?-w)+ra
o

or

f

a7T

H(~) = . & 1 - ra h(W)dw
, l-2r oos(T-W)+ra
o

In both cases c = reiT,

(43)

If in the original boundary value problem the value Of.
the speed at infinity has been prescribed, then q*@ is a

known constant. If, however, the value of the maximum local
speed is presoribed~ then q*~ is determined from the rela-
tion

l+g

/

2 q:= q;ax max
o*a

where q* denotes the (given) maximum local distorted speed.
max

The function 9 also is uniquely determined by f(UJ),
for being a harmonic funotion of ~ and q and satisfying
conditions (38) it is given by the formula

f

-n

e(g)=-+ 1 - ra
{ }
@[f(W)] - w dw

o 1- 2r cOs(T-W)+ra

f

am
.1 1 - r=
z { }

@[f(W)J - 2Tr dw
1-

(46)
2r ooe(T-UJ)+ra‘n
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It should be o%served that

lim e = O (.46)
t4m

..

No difficulties are involved in computing the above-
mentioned functions since the integral defining the funotion
h(w) is a proper Riemann integral, In fact, for T = O the
integrand is equal to

.-—

—

In computing this integral the expression in the braces must
be treated as a -periodic function of u with-the pericd 2n.

After qm and % have been determined the quantities
q/so, T, p, p, and gik can be oomputed as functions of

t and l?, In particular, the %oundary values f(a) t3f q
are given by

{
~ [f(UJ)] = a. Q &* [f(UJ)]a

)

Thus the statement that the knowledge of the function ~ = f(w)
yields the pressure distribution along F- is verified.

In the preceding considerations no properties of the
function f(u)) except the boundary conditions (31) were used.
Therefore the following statement is valid.

To every function f(w) (whioh is not n:~:~s~r~lya;;e
mapping function) satisfying the conditions
f(211) = 2Tr there corresponds an analytic function W* =q*e-ie
defined by equations (39) to (45). This function is uniqu”ely
determined by f(w), the function @(a) which depends only
upon the shape of the profile P and either of the two
~::yyet ers q“- and q~ax which are connected %y relation

. If W* O= 1 everywhere, then the functions q/s. and

T also can be computed as functions of t. This will always
be the case if the prescribed value of q:ax < 1.

.
If the function f(w) also satisfies condition (31) (as

the actual mapping function does), then the analytic function
W* will satisfy the condition
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(47)w* (~) = W* {g)
*

(The bar denotes the oo~~~~:~e oomplex quantity. ) In this
case the function T = corresponding to f(w) will
possess a symmetry with respeot to the ~-axis:

(48)

In the following condition (31) will always be asnumed.

5, Gomputatzon of the Potential in the ~-Plane

It is known znat the potential cp considered as a fu~c-
tioa of U* and VW (W* = U* - iv*) satisfies the linear
partial differential equation

(See referenoe 2, p, 15. ) This elliptic equation is invariant
with respect to con formal transformation so that ~ considered

- as a funotion defined in thq ~-plane satisfies the equatien

(50)

TO determine the baundary conditions satisfied by cp
‘o%serve that 3Y virtue of the can formality of the mappihg
(28) with respect to the’ metric (34) a line element normal

P is taken into a line element normal to the
;:;;l-;eprl?riiel. Hence oondition (20) implies that in the

.
Next

$ ~(r ootg 7, r sin 7) rl=o= (51)
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From (17) and (29) it follows that
●

From the symmetry of the flow (in fact, from condition (48))
it also follows that

(53)

Now let @(&,~) denote the (one-valued) solution of equa-
tion (50) satisfying the conditions

.

and
*

(64)

(55)

Then there exists a positive constant C such that

This follows from the linearity and homogeneity of the differ-
ential equations and the boundary conditions,

The existenoe of the function @ is assured by known
theorems and in principle @ can be computed numerically
with any desired degree of accuracy. The actual computation

. of the function @ however, presents considerable diffi-
culties. A brief discussion of the various possibilities
will be found in appendix I. For the method described in
this report it is irrelevant which numerical or mechanical.
device is actually used for solving equation (50).
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Thus it is seen that the knowledge of the function f(w)
permits the computation of the potential

c,
Cp as a function

. of except for a constant positive factor.

Furthermore, to every function a = f(w)—— satisfying

conditions (31) and (32) there corresponds a funotion @(E,m)
satisfying the condition -- —

c? (E,-m) = a?(~,n} (57)

namely, the solution of (50) under the conditions (54) and
(55) where T = ‘ie is the analyticT(lw*~a) and w* = q*e
function aesociat~d with
(45)*

f(W) by means of equations (39) tc
The function @ can tie computed if \w*l nowhere

exceeds unity and is determined by the shape function E3(a)
and ?)y either of the two parameters q*m cr q:ax ●

The

actual determination of Q requires the numerical integra-
tion of a linear partial differential equation in a domain
independent of the particular problem.

. . . .

. 6. The l’unctional Equation Satisfied by f(w)

Along the profile P the potential CP and the speed
● q. are ccnneoted by the relation

d~
q =ao—

ds

or

a.
ds=— dp

q

If the function 0 defined in the previous section is i.ntrc-
duced, this can be written in the form

ds =
aoC

‘Q (cos W, sin W) dw (58)
&cf(u.J)l dw.

Setting

- Q(cos w, sin W) = 5(W) (59)
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integration yields

u.

c f’ ,om.o) dul’
s =

a.

o ~[f(wl)]

But s = crs/2Tr,~ = Q(~*a), and u = f(w) ,

where

[(w)
{

= Q q“ [f(w)]’
}

By setting u.J.217 it is seen that

/’7
>2 n

SC! d6(W )
—=2Tr—
21T .

0
Q(w)

so that finally

(60)

Since starting from the function $(W) it is~ossible
to compute q*(C) and therefore also
q(~,~) and ~,

I* [f(w)], Q(w),
equation (60) is a functional equation satis-

fied by the function. f(w)

*
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.
7, Equivalence of the Functional 13quation

and the lloundary Value Problem

In this section it will be shown that a solution of the
functional equation actually yields a solution of the bound-
ary value problem formulated in section 2. In the same time
it will be shown how the knowledge of the function f(uJ)
permits the computation of the velocity distribution at
points not situated on the profile P.

In the following it is assumed that a function f(w)
satisfying (60) is known. This alread,y implies that f is
an increasin

f
function (since its derivative is necessarily

non-negative and that the analytic function w* = q* e-ie
associated with f(w) (cf. see. 4) satisfies the condition

The function f(w)
T, e as functions of

.

c J {(a.
* x= z- Cos e @ -1-

. E
L

+

+

.

(61)

determines functicns q/so, M, P/PO,

[ and q. Set

(62)

where Q is the function defined in section 5, subscripts
denote partial differentiation, and C is a positive oonstanto
These line integrals are independent of the path.. (For the
proof, see appendix II, sect A.), Hence equation (62) defines
a transformation
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x = X(t,m), Y = y(k,n) (63)

This transformation can also be written in the form

z =X+iy

f
c ao eiO a~ - ic

!

a. eig (QT d5-#fj dfi)= (64)
. T “ qJ-

In order to compute the image of the circle Itl ‘1 under
this transformation the integration may be performed along
this circle. But on the circle the normal derivative Of d

0 and

{

-@[ f(uJ)]M 1-f

e =
G[f(w)] - 2TT

a.— = Q(w))
~

so that the image of Icl =1 is

for O<w<m

for Trcw<m

for O<w<lf

for ‘n< w< a-n

the ourve

or, by (60)
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where Cl is a new positive constant.
a= f(w)

r
CT

= c1
eie(crl )

z &of,

Thus , setting

0s0s2 (65)
●Jo

Comparison of this with (12) shows that (62) takes the circle.

ICI = 1 into the profile P, and, since f(w) is an in-
creasing function, the mapping is one-to-one, The constant
c1 can be determined from the length of P, since this
length is equal to

s = c1 2n (66)

Next , the Jacobian of the transformation (62) equals

J
= a(x,y) =

a(b7)
.

It can be shown that the

(67)

gradient of @ does not vanish for
Ig\>l. Hence the Jacobian iS positive for

. nally, by virtue of (55) and (46) as t-~, ‘cl ‘1. Fi-

(68)

where Mm is the value of M at t = OJ, Hence

lim z = @ (69)
~.jm

From the foregoing statements it follows that the trans-.
formation (62) yields a one-to-one mapping of the domain

J}l ~;el into the domain E(P). Henoe all functions defined
~-plane daO\ e, 0, and so forth, can be considered

as functions of x.
(63)

and y. The transformation inverse to

f. = 5(X, Y),. n = n(x,y)
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is conformal with respect to the metric (34), The proof of
this assertion will be found in appendix II, section B..
Since @ satisfies equation (50) it follows from a lemma
proved in a previous paper (reference 2; appendix, converse ““
to Lemma 1) that in the z-plane @ satisfies equation-”(15)
considered as a linear differential equation (since PfPcl

is a known function in the ~-plane and therefore also in
the z-plane).

However, the relations

together with (62) yield the equations

u= q COS e, v = q sin e

.
are the components of the gradient of the function .-...——

.
aoqi~,y) = c a. Q
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The function q)
. satisfies equation (15) considered as a non-

linear equation, that is, it satisfies equation (16), Thus

v is the pot~ntial of a compressible flow.in the z-plane and
u - iv = q e-le its complex velocity.

It is now easy to verify that
boundary conditions,

v ~also satisfies the
In fact, along the angle 6 coin-

cides with the slope of the profile and at infinity 0 van-
ishes, ~inally, q.+ takes the value q= = ao Q(q*@2) at
infinity and its maximum is qmax = a. Q(q*2 ).max

The foregoing discussion contains both the proof of the
equivalence between the boundary value problem and the func-
tional equation (60), and the description of a method permit-
ting the computation of the flow in the whole domain III(P}
onoe the function f(w) is known.

8. Solution of the Functional Equation

In the preceding seotions the determination of the pres-
sure distribution along a given symmetrical profile P has.
been reduced to the determination of a function a = f(w)
satisfying the conditions

f(o) = 0, f(2T?) = 2TT

}

(70)
f(2?T -1a) = 2TT - f(a)

and the functional equation (60). The form of this equation
suggests the application of the iteration method.

Let f(W) be any function satisfying conditions (70).
By use of this function the functions w*, ‘$(w), T and 6(W)
can be computed (cf. sees. 4 and 5) provided the function Wm
satisfies the condition Iw*! < 1, (Thie will always be the
ease if ~:ax is prescribed. ) Therefore the right-hand side

of (60) oan be computed and will represent an increasing
function g(w) which will again satisfy conditions (70).
This function will be denoted by —

.

g(w) = F [f(Wf), W] (71)

With this notation equation (60) reads

f(w) = F [f(W!), W] (72)
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Thus the problem consists of finding a fixed point of the
functional transformation 1’.

.
Now let fo(w) (approximation of order zero) be a

function satisfying conditions (70) and set

fl(u.))= F [fo(@), W]

I

● ☛✟✎☛✎ ● .9*.. .

fn(w) = F [fn-l(W’), W]

● ✎✌☛✎ ● ✎☛✎✎ ✎ ✎ ✎

d

If the sequence fo(w), fz(w), + , ., fn(w), . . ●

7- (73)

aonverges

to a function f(w) and if lim F(n) = F(f),
.

then f(w) iS
a solution of ea,uation (60).

It seems to be rather difficult to prove rigorously the
. eonvergenae of this method. However, on the basis of computa-

tions carried out for the special case Y = -1 a fairly
rapid convergence of the iterations seems probable, and it
might be expected that good results will be obtained after a
few steps. The real difficulty in computing the successive
approximations lies in the numerical integration of the dif-
ferential equation satisfied by @. (Cf. appendix I. ) Thus
the practical applicability of this method hinges upon the
development of efficient methods for solving this problem,
whioh , of course, is of Trime importance for practically all
branches of engineering mathematics. -.

It should be noted that the ;iteration prociess may break
down if in the original boundary value problem the value of
q~ is prescribed. This cannot happen if the value of qmax
is prescribed.

.
The rapidity of the convergence will depend upon the

appropriate choice of the function fo(u) (the approxima-
. tion of order zero). Several possibilities of choosing f.

are listed in order of preference.
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(1) Choose for f. the solution of equation (60) pre-
. viously obtained for a profile Pt close to the desired pro-

file and for a value of qt= (or q~max ) close to the desired .
value of q= (or qmax).

(2) Choose for f. the solution of equation (60) for

the special case V = -1. (Cf. next sec. )

(3) Choose for f. the function resulting from the con-
formal mapping of the profile into a circle.

(4) For thin profiles fo(w) may be chosen as

fo(w) = ; (1 - Cos w), Osw<n

1

(74)

fo(21-r- w) = 21T - f(w)

Note that (3) and (4) are special cases Of (l> (In the
. case (3) P’ = P and q~= 0, in the case (4) PI is a

straight segment and q~= 0. ) -.—.—

9. Comparison with the Case y = -1

If it is assumed that the flutd obeys the so-called lin-
earized pressure-density relation of Chaplygin-K&rm&n-Ts ien
(references 4, 6, and 7), Y = -1 and equations (1), (2),
and (4) yield

T =1

a. 11—=.
~ (2p-q* )

It is seen that in this case the function @ becomes inde-
pendent of the particular function f(w). In fact,

RO that



HACA TN NO. 1012
●

5 (UJ) =2 COSUJ

30

“

Equation (60) takes the form of an integral equation treated
in a previous paper (reference 1, equation (51)), Sinoe O
does not have to be determined, only functions of one vari-
able enter in the problem and the computational labor is
greatly diminished. The convergence of the iteration method
described in the preceding section when applied to this inte-
gral equation turned out to be very satisfactory,

10. Comparison with Other Methods

—

All other analytical methods proposed for solving the
boundary value problem of section 2 involve an expansion of
the potential function cp(x,y) in terms of a parameter char-
acterizing either the deviation of the flow from the uniform
flow (such as the thiclcness parameter of a profile) or the
deviation of the flow from an incompressible flow (suoh as
the stream Maoh number). Thess methods also involve succes-
sive integrations of linear partial differential equations,
Methods based on such expansions necessarily suffer from the

. disadvantage that the convergence beoomes worse as the devi-
ation from the “undisturbed state” inoreases, that is, pre-
cisely as the influence of compressibility becomes more pro-
nounced. In the present method the incompressible (i.e. ,
infinitely slow) flow or the uniform flow (flow past a
straight segment) is in no way distinguished, and the rate Of

convergence should not depend too mush upon the value of the
parameters -q or qmax ●

.- ..—

w

Furthermore, in all other methods the speed at infinity
and therefore the stream Mach number are prescribed, and
there is no way of telling whether this value of the etream
Mach number does not exceed the critical Mach number. If
this is the case, the flow becomes partly supersonic, and
the convergence usually breaks down. In the present method
it is possible to prescribe the maximum local Maah number
Mmax and the value of Mmax may be chosen arbitrarily close
to unity.

—

The preceding remark applies also to a purely numerical
treatment of the nonlinear equation (Z5) (see a reoent pa er
by llmmone, reference 8, ?and the literature quoted therein .
This treatment consists in replacing the differential equa-
tion by a nonlinear difference equation which is solved by
the relaxation method.
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11. On a Velooity Correction Formula by Garriok and Kaplan
.

The functional equation to whioh the pressure distribu-
tion problem has been reduced throws new light ona velocity
correction formula recently pro~osed by Garriok and Kaplan.
(See referenoe 9, ) These authors derived their “geometrio
mean formula” using an analogy between compressible and in-
compressible flGws and some ideas from the theory of sigma-
monogenic funotions, In order to write this correction for-
mula in the notations of the preeent papeq let A(Mm) denote

the value of q*~ corresponding to the stream Mach number Me
and set

Then the Garrick-Kaplan formula reads

(L) ‘1 F’””) (:),]
, ~m =

c Q1 [~ (MJ ]
(76)

Here (q/q@)o denotes the ratio of the speed at a point of

a Profile to the speed at infinity for a compressible flow
of stream Nach number ~ and (q/~)~ ie the same ratio “

‘for.an,.incompressible flow (i.e., for a flow with M= = O).

For the case of a fluid obeying the linearized preesure-
density relation with Y = -1 formula (76) takes the form

where

.

(77)

.-

(78) .._

This is the K&rm&n-Tsien velocity correction formula. (See
referenoe 6.)

It ie immediately seen that formula (76) would be rigor-
ously correot if the function u = fo(u)) resulting from the
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conformal mapping of the profile into a circle were the solu-.
tion of the functional equation (60) for the desired value
of M=, The situation may be summed up as follows: The diff-
erence between the relative velooity distribution (the dis-
tribution of the values @&) In an incompressible flow
and in a compressible flow of stream Mach number Mm is due
(a) to the difference between the values of the corresponding
mapping funotions a = f(w), and (b) to the fact that the way
in whioh the velocity distribution is determined by the map-
ping function f(~) depends upon the stream Mach number.
The velocity correction formula (76) takes into account the
factor (b) but fails to include the effect of factor (a).

On the basis of computations carried out for the caae
Y=-1 (see reference 1, figs. 1 and 2) it may be concluded
that formula (76) will yield values of qtqm whiah are too””” ‘-

low. Therefore the values of the critical Mach number
(stream Mach number for which ~ax. = 1) computed by fornula

(76) may be erpected to be higher than the aotual values. -.

. CONCLUDING REMARKS

1, The method presented in this report reduces the
problem of finding the velocity and pressure distribution
along a preassigned symmetrical profile to the solutlon of a
certain mapping problem which in turn is reduced to the solu-
tion of a functional equation by the method of successive ap- “--
proximations, Though the mathematical difficulties peculiar
to the nonlinear differential equations of fluid dynamics are —
eliminated by this method, the practical application of this
procedure requires the numerical solution of linear partial
differential equations with variable coefficients, This
last problem presents no theoretical difficulties, but really
efficient methods for its solution are etill in the process
of development, Upon this development, which is intimately
connected with the deeign of automatic computing machines,
hinges the practical applicability of the present method.

---———
—..——

2, The extension of the present method to the case of
circulatory flows and to the caee of flows with locally
supersonic regions will require a more profound investiga-
tion of the “mappinge oonformal with respeot to a compress-

. ible flow” introduced by the author in a pr~vtous r~port.
(See reference 2, )

.
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3, The author takg~ the opportunity to draw attention
. to the similarity betweea the meihod given in reference 2

and the one given (faom a different point of view) in a
paper by S. A. Christianovitoh (referenae 17). In the
author’s opinion, however, ths paper by the noted Russian
fluid dynamiaist contat~s an error. In the terminology
introduced in referenau 2, a statement made by Christianovitch

“TO evary subsonic aompress-oould be formulated as followsl
ible flow past a proftze P thera exists a conjugate (modulo
1) incompressible flow FKS% ~ather ~reftle P!,tl l?he author
believes that this at~~enent is mis194&~ag and that, for this
reason, Christianovitch$s @etkad m~e~ ~ail in the case of
circulatory flOWe*

Brown University,
Providence, R. 1., Bs~~s~3M ~9~5.

.
CONCERNING THE COMPUTATION OF THE FUNCYIION@

A. No matter which method is used for integrating the’
linear partial differential equation (50) satisfied by @
it is convenient first to introduoe the auxiliary oomplex
variable Z = X + iY by $he relation

This transformation takes the domain ICI >1 into the do-
main exterior to the straight segment (-1, +1). The func-
tions 0 and T may be considered as functions af X and
Y, and in view of the conformality of the transformation
(Al) @ satisfies the equation

R’urthermore$. by v2stue of (57)

(AZ)

(A3)
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(A4)

for X<.1 ana X>l. But the same relation holds for
.1 < x< 1 by virtuq of (54). At infinity equation (55)
implies that

(A5)

The determination of 0 requires the integration of equa-
tion (AZ) in the half-plane Y > 0 under the boundary con-
ditions (A4) and (A5), ,

A numerical or mechanical integration can be performed
in a finite domain only. Therefore the upper half-plane is
replaoed by a sufficiently large rectangle with the vertices
(-A, 0), (-A, B), (A, B), (A, 0) and the condition (A5) is.
replaced by the boundary oonditlons

@ (*A, y) = AA, @(X, B)=X (A6)

(Another way of passing to a finite domain would aonsist of ~......
a conformal transformation, say of ICI > 1 into Iq <1.)

B, The boundary value stated formerly can be solved by
means of electrical models. One method iS that of the elec-
trolytic bath due to Taylor and Sharman (references 10 and 11),
the other that of network analogies due to Kron (references 12 ___
and 13).

C, In order to solve equation (A2) numerically it is
first replaced by a difference equation. (The possibility
of reducing (A2) to an integral equation will not be dis-
cussed here.) Let Xo, Y. be a point of the domain con-

sidered and set Xl = X. + 6, YX = Yo, Xa = Xo, Ya = Y. + 6,
. x= =XO-8, Y3=Y0, X4= xo, y4=yo-6, 8 being a small

positive number. Denote the value of a funotion S2 at
(xi, yi) by ~i. and replaoe the expressions

(*L’ (:)0’ (E% (*),
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respectively, Equation (A2) can be rewritten in the form

or

where

4T0 - Tl + T3
$1 =

16 To

4T0 - T~ + T4
p2 =

16 To

1
(A8)

4T0 + TI - T3 4T0 + Ta - T4
P3 = $4 =

. 16 To 16 To J

If the point O lies on the line Y = 0,. then the point
4 lies outside of the domain considered and according to
(A3) the preceding formulae must be changed to

4T0 - TI + T3
PI =

16 To

4T0 + Tl - T3
B3 =

16 T
J

Note that the following relation always holds

p/.pa+p3+@4=l

.
and that

(A9 )

(A1O)

if 8 is sufficiently small.
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Since equation (A2) iS invariant with respect tO rOta-.
tion, the same difference equation would he obtained if the
square formed by the points 1, 2, 3, and 4 woul~ not have
its sides parallel to the coordinate axes. Therefore, it
is easy to compute @ at lattice points which do not form a
uniform net. In faot, it is advisalle to use more points
near and on the segment (-1, 1) for here the function T
will change rapidly and the values of Q on this segment
are the ones aotually needed.

A simple computation shows that if the function

@ (x, Y) = 2’cnm Xn Ym

satisfies the differential equatiOn (A~), then the polynomial

+-clox + Col ~ + c~ocoo
Xa+c ~.lxY + coaYa

satisfies the difference equation (A7). It also is known ._–...
that solutions of the difference equation oonverge toward
the solution of the differential equation as the parameter.
& approaches zero.

——.

~. The boundary value problem for the difference equa-
tion derived above can be solved either by a rigid iteration
soheme, say by Liebmannls method (references 14 and 15) or
by a relaxation method, Concerning the latter, reference is
made to a recent paper by Emmons (reference 8) and to the
literature quoted therein, The iteration methods require
more computational labor than the consequent app~icatiOn Of
the relaxation method and the use of modern computing devioes
heoomes imperative. On the other hand, the instructions for
oomputing become simpler and the whole problem can be “coded”
once and for all on an automatic computing maohine. An at-
tempt was made to solve equation (A2) by Liebmannls method
using the I.B.M, Automatic Sequenoe Controlled Calculator.
This attempt could not be considered successful because of

. the slowness of convergence. It is possible that convergence
could be improved by using etther a difference equation in-
volving higher differences or a different iteration procedure.

. However, the design of automatic computing machines is now In
the prooess of rapid deve~opment, and the speed at which
these machines perform will doubtless be increased at a



NACA TN No. 1012 37
.

tremendous rate, This trend will, on the one hand, reduce
. the importance ~f ths rate of convergence and, on the other,

put a premiura on the simplicity of the computational proced-
ure.

1!!.In this section, the convergence of Liebmsnnls itera-
tion method when applied to the bouadary value problem for
the difference equations (A7) to (A3) will be prove-d. Tllhe
proof is qatterned after tihe one given by Itoewner for the
case of the first boundary value problem for Laplacers dif-
ference equation. (See reference 15,)

Let PI} Pa, . . ., PN be the points at which the val-

ues of 0 (denoted by 31, @a, . . ., ON) are to be computed.

It will %e assumed that among the four neighboring points of
the point Pl there is at least one boundary point (i.e., a
point with either x = AA or Y = B), and that one of the
four neighboring points of Pn is Pn-l(n = 2, 3, . . ., N).
Liebmann~s procedure for findinq $h

?oJ:’;:?o)@’ ‘“a;Nf:i-10WS. Assume some trial values @l 19** .

Go over the points pi In the indicated order correcting the.
value @i(o) using equations (A7) and (A8) (or equations .“

(A7) and (A9) if Pi lies on the X-axie). In applying these
.

formulas use corrected values of @ whenever possible. In

this ~w new values (P1
(1)

, d? . ● ., @#) are obtained.

Repeat this process to obtain the values @i
(a )

,@i(31 ,.. ,

It is asserted that as n-4~ @i (n) converges toward the

desired value #i.

In what follows it is assumed that the net is so fine
that condition (A1O} is satisfied. Plainly

#i
(1) = I ~is @j

(o)
+ Pi.

i
and, in general,

..J

(All)

.
(A12)

$
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where the constants $~

t

are linear combinations of products
.

of the $~ defined by A8) and (A9) and the constants $io

depend upon the boundary conditions. Thus

PiJ 2 0 (A.13)

Now assume that the boundary conditions read

@= Ofor X=+Aand forY=B

and that (1~(0) = ~ , i=l, 2, . . . N. It is easily seen

th~t in th+s.ease all pio vanish and that @l
(1)

< O.(0),

@~
(3) [0)

<(0= ,, , . . Since , in the aase considered

(1)@i = I $ij

J.
it follows that there exists a oonstant b suoh that

.

I $ij
<b<l, i = I, 2, . . ., N

J
Since, in the general case

then from (A12) and (A15) it follows that

Set

(A14)

.—

(A15]

(M6)

(A17)

From (416) and (A13) it follows that
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.

.

.

.

so that by (A14)

and hence

n+w

‘d~+1 < b dn

dn < bn-> d=+o aa

Thus the limits

o~ = nl$mai
(n)

exist, since

(A19)”_———

p=o

Plainly

(A18)

(A20)

which shows that the
@i

satisfy both the boundary condi-

tions and the difference equation.

Also, from (A12) and (A20) it follows that

so that by (A13) and (A14)
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~i(n)_ ~i (A21)

blishes the uniqueness of the solutiOn.

Finally, if all differences ~i(n) _ &4 are *os~-

tive (negative), then by (A16) and (A13) so are all the dif-

ferences
~ (n+l )

- !&? This implies that all values @in

lie below (above) the desired values @i.

To summarize, the following statements are seen to be
true.

(i) Liebmanngs method oonverges,

(ii) Both the maximum corrections
I
o~

(n+l)
- o~

(n)

I

*i(n) ‘
I

and the maximum differences - o~
I

deorease monoton-
.

ically.,

(iii) If all corrections @i
(n+l )

- #~
(n) are positive

.
(negative) all values @i

(n+l )
are smaller (larger) than the

desired values.

If no assumptions concerning the order of the points pi
are made, a slight refinement of the argument shows that
statements (i) and (iii) remain true and (ii) holds if the
words “decrease monotonically” are replaced by “do not in-
oreaee. n

APPENDIX 11

CON031RNING THEI MAPPING FROM !!HliZ-PLANE INTO THE ~-PIANU

.
A. This appendix contains the proof of two assertions

concerning the transformation (62) made in section 7. First,
the independence of the line integrals on the right-hand side.
of (62) on the path of integration will be established. Since
@ satisfies equation (50) there exists a function $(!.,~)
such that
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(The function ~ is proportional to the stream-function
of the compressible flow in the ~-plane. ) Since log W* is

and [6 CI and ~ nay be considered asan analytio funotion of
functions of log q* ● Sinoe equations (A22) are in-
variant with respect to conformal transformations, it fol-
lows that

(A23)

By introducing instead of log q* the new vartable
neoted with log q* by equation (3) and using equati~n”?~),

. the following system is obtained

?@ Poq w. 5F=——p aq

(A24)

a@=.Po(-~
aq Pq

(These are the well-known dhaplygln equations. )

Now (62) may be written in the form
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and equations (A24) are precisely the conditions that these
integrals he independent of the path (cf. reference 16, P.
8).

It will now be shown that the mapping inverse tO
(62) ~~ conformal with respect to the metric (34), (35;. By
use of the relations

together with (62) and (67), the following equations are ob-
tained
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It is seen that theee partial derivatives satisfy the oondi-
. tions

ML.
ax

ML=
ay

L===

J~ll~aa - g12

where the glk are given by (35). These are the well-known

Beltrami equations expressing the conformality of the mapping

& = f(x,Y}, ~ = n(x, Y)

. with respect to the metric (34).
..— ___

.
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TABLE 1. (Continued)

(q*)~
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0.68882
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0.52351
0.50127
0.47814
0.45411
0.42913

0.40316
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(q*)2
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TABLE 2. ~~ and T as functions of q*2
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TABLE 2. (Continued),

(q*)2 rl_~2 T II (q*)2 !/1.M? T

0.345 0.90109 0.98819 0.500 0.84056 0.96933
0.350 0.89935 0.98777 0.505 0.83835 0.96847
0.355 0.89759 0.98734 0.510 0.83612 0.96760
0.360 0.89582 0.98690 0.515 0.8338’7 0.96671
0.365 0.89403 0.98645 0.520 0.83160 0 ● 96579

0.370 0.89224 0.98598 0.525 0.82931 0.96486
0.375 0.89043 0.98551 0.530 0.82701 0.96390
0.380 0 ● 88861 0.98502 0.535 0.82468 0.96293
0.385 0.88677 0.98453 0 ● 540 0.82232 Q.96193
0 ● 390 0.88492 0.98402 0,545 0.81995 0.96091

0.395 0.88306 0.98350 0.550 0.81756 0.95986
0 ● 400 0~88119 0.98296 0.555 0.81514 0.95880
0 ● 405 0.87930 0.98242 0.560 0.81270 0.95770
0.410 0.87740 0.98186 , 0.565 0.81023 0.95659
0.415 0.87549 0.98129 0.570 0.80774 0.95545

0.420 0.87356’ 0.98070 0.575 0.80523 0.95428
0.425 0.87161 0.98011 4 0.580 0.80269 0.95308
0● 430 0.86966 0 ● 97949 0.585 0.80013 0.95186
0.435 0.86768 0.97887 0.590 0.79754 0.95061
0.440 0.86569 0.97823 0,595 0.79492 0.94933

0.445 0.86369 0.97757 0.600 0.79228 0.94802
0 ● 450 0.86167 0.97691 0.605 0.78961 0.94668
0.455 0.85964 0.97622 0.610 0.78691 0.94531
0.460 0.85758 0.97552 0.615 :.p; 0.94391
0.465 0.85552 0.97481 0.620 . 0.94247

0.470 0.85343 0.97408 0.625 0.77863 0 ● 94101
0 ● 475 0.85133 0.97333 0.630 0“.77581 0.93950
0.480 0.84921 0.97256 0.635 0.77296 0.93796
0.485 0.84708 0.97178 0.640 0 ● 77’007 0.93639
0.490 0.84492 0.97098 0.645 0.76715 0.93477
0.495 0.84275 0.97016 0.650 0.76420 0.93312
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TABLE 2. (Continued)

lJAOATM No. 1012

T

“::::::;
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1
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TJiBLE5. M~/jO, P/PO, and q/A. as f~cti~ns of q*~

(q*)2
-

0.00
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().04
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0.10
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0.20
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:.:$
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M

0,0000
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:.::::

0:2650
0.2844
0.3028

0.3204
0.3374
0.3538
0.3678
0.3852

0 ●4005
0.4154
0.4300
0.4444
0.4587

0.4728
0.4867
0.5005
; ● :;;:
s

0:5417
:.:::;

0:5827
“O.5964

0.6102
0.6240
0.6380
.0.6520
0.6663

/+0
1.0000
0.9952
0.9904
0.9855
0.9806

0.9757
0.9707
0.9657
0.9607
0.9556

0.9506
“o● 9453
0 ● 9401
0.9348
0.9295

0.9241
0.9187
0.,9132
0 ● 9077
0.9021

0.6965
0.8908
0.8850
0.8791
0.8732

0.8G7Q
0.8611
0.8549
0.8486
0.8422

0.8357
0.8291
0.8224
0.8155
0.8085

—— —
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P/P.

1.Odoo
o ● 9933
:.;3;;

0:9728

0.9660
0.9591
0.9522
0.9452
0.9382

0.9311
0,9E?40
:,!2;2:

0:9024

0.8951
0.8878
0.8803
0.8728
0.8653

0.8576
0.8500
0.8422
0.8344
0.’8265
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& :;3;

::;:::
●

0.7771
0.7685
0.7598
0.7509
0.7418

q/s.

o ● 0000
0.0981
0.138Q
0.1706
0,1974

0.2213
0.2430
0.2631
0,2821
0.3000

:.;;;:

o:*94
:.w:

●

0.3942
0.4083
0.4222
0.4358
0.4498

0.4625
0.4754
0.4888
0 ● 5011
0.5138

0.5263
0.5388
0.5512
0.56?7
0.5760

0.5884
0.6008
0.6132
0.6256
0.6382
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TABLE 5. (Continued)

(q*) 2 M
Pbo

P/P. %.

Q..7O 0.6807 0.8014 0.7326 0.6508
0.72 0.6953 007940 0,7232 0.6636
0.74 0,7102 0.7865 0.7136 0.6765
0.’76 0.7254 0,7788 0.7038 0.6896
0.78 0.7409 0.7709 0.6937 0.7029

0.80 0.7568 0.7626 0.6834 0.7164
0,82 0.7733 0.7541 0.6727 0,7303
0.84 ;;::;: 0.7454 0.6617 087447
0.86 0.7360 0.6501 ;.;;’:
0.88 Cl.8264 0.7263 0.6381 ●

0.90 0.8459 0.7160 0.6253 0.7906
0.92 0.8669 007049 0.6118 0.8076
0.94 0.8897 0.6927 0.5970 0.8260
0.96 0,9154 0,6791 0.5806
0.98

d.8464
0.9463 0.6627 0,5609 0.8706

1.00 1.0000 0.6342 0.5274 0.9119

.

.

-.
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TABLE 4. q*2 as a function of M

Id
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0.02
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0.08

0.10
0.12
0.14
0.16
0.18

0.20
0.22
0.24
0.26
0.28

0.30
0.32

::E:
0.38

0.40
0.42
0.44
0.46
0.48

(q*)2

o ● 0000
0.0008
0,0033
0.0075
0,0140

0,0207
0.0298
0 ● 0404
0.0526
0.0663

0.0814
0.0979
0.1158
0.1350
0.1553

0.1776
0’.1995
0.2233
0.2477
0.2732

0.2994
0.3263
0.3538
0.3819
0,4103

M

0.50
0.52
().):

0:58

0.60
0.62
0.64
0.66
0.68

0.70
0.72
0,74
0.76
0.78

0.80
0.s2
0.84
0.86
0.88

0.90
0.92
:.;?

0:98

1.00

(q*)z
o ●4391
0.4682
0.4975
0.5268
0.5561

0.5853
0.6142
0.6439
0.6712
0.6991

0.7262
0.7528
0.7787
0.8039
0.8280

0.8512
0.8732
0.8941
0.9136
0,9317

0.9483
0.9632
0.9763
0.9872
0 ● 9954

1 ● 0000
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